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Subject CS1
CMP Upgrade 2021/22

CMP Upgrade

This CMP Upgrade lists the changes to the Syllabus objectives, Core Reading and the ActEd
material since last year that might realistically affect your chance of success in the exam.  It is
produced so that you can manually amend your 2021 CMP to make it suitable for study for the
2022 exams.  It includes replacement pages and additional pages where appropriate.

Alternatively, you can buy a full set of up-to-date Course Notes / CMP at a significantly reduced
price if you have previously bought the full-price Course Notes / CMP in this subject.  Please see
our 2022 Student Brochure for more details.

We only accept the current version of assignments for marking, ie those published for the
sessions leading to the 2022 exams.  If you wish to submit your script for marking but have only
an old version, then you can order the current assignments free of charge if you have purchased
the same assignments in the same subject in a previous year, and have purchased marking for the
2022 session.

This CMP Upgrade contains:

· all significant changes to the Syllabus objectives and Core Reading

· additional changes to the ActEd Course Notes and Assignments that will make them
suitable for study for the 2022 exams.
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0 Changes to the Syllabus

This section contains all the non-trivial changes to the syllabus objectives.

Prediction intervals have been added to Objective 3.2 as follows:

3.2 Confidence intervals

3.2.1 Define in general terms a confidence interval for an unknown parameter of a
distribution based on a random sample.

3.2.2 Define in general terms a prediction interval for a future observation based on a
random sample.

3.2.3 Derive a confidence interval for an unknown parameter using a given sampling
distribution.

3.2.4 Calculate confidence intervals for the mean and the variance of a normal
distribution.

3.2.5 Calculate confidence intervals for a binomial probability and a Poisson mean,
including the use of the normal approximation in both cases.

3.2.6 Calculate confidence intervals for two-sample situations involving the normal
distribution, and the binomial and Poisson distributions using the normal
approximation.

3.2.7 Calculate confidence intervals for a difference between two means from paired
data.

3.2.8 Use the bootstrap method to obtain confidence intervals.

Sensitivity and specificity have been added to Objective 3.3.1 as follows:

3.3 Hypothesis testing and goodness of fit

3.3.1 Explain what is meant by the following terms: null and alternative hypotheses,
simple and composite hypotheses, type I and type II errors, sensitivity, specificity,
test statistic, likelihood ratio, critical region, level of significance, probability-value
and power of a test.

3.3.2 Apply basic tests for the one-sample and two-sample situations involving the
normal, binomial and Poisson distributions, and apply basic tests for paired data.

3.3.3 Apply the permutation approach to non-parametric hypothesis tests.

3.3.4 Use a chi-square test to test the hypothesis that a random sample is from a
particular distribution, including cases where parameters are unknown.

3.3.5 Explain what is meant by a contingency (or two-way) table, and use a chi-square
test to test the independence of two classification criteria.
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Credible intervals have been added to Objective 5.1 as follows:

5.1 Explain the fundamental concepts of Bayesian statistics and use these concepts to
calculate Bayesian estimates.

5.1.1 Use Bayes’ theorem to calculate simple conditional probabilities.

5.1.2 Explain what is meant by a prior distribution, a posterior distribution and a
conjugate prior distribution.

5.1.3 Derive the posterior distribution for a parameter in simple cases.

5.1.4 Explain what is meant by a loss function.

5.1.5 Use simple loss functions to derive Bayesian estimates of parameters.

5.1.6 Derive credible intervals in simple cases.
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1 Changes to the Core Reading and ActEd text

This section contains all the non-trivial changes to the Core Reading and ActEd text.

Chapter 2

Section 1.6

The range of values taken by the hypergeometric distribution, given in the Core Reading, has been
corrected to start at zero.  Replacement pages are attached.

Distribution: ( )
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Chapter 3

Section 2

An error in the derivation of the skewness has been corrected.  Replacement pages are attached.
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Chapter 4

Solutions

The solutions to parts (i) and (ii) of Question 4.5 should include the input values for which they are
valid.  Replacement pages are attached.

Chapter 6

Solutions

The solution to Question 6.9, the mean and variance of the approximate normal distribution (200
and 300) are the wrong way around in the standardisations (although the resulting numbers are
correct).  Replacement pages are attached.
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Chapter 9

Section 1

New Core Reading and ActEd text has been added to give a general overview of prediction
intervals.  Replacement pages are attached.

Section 2.1

A new formula and an example of prediction intervals have been included in the case when
sampling from a normal distribution with known variance.  Replacement pages are attached.

Section 3.3

A new section has been added to cover prediction intervals in the case when sampling from a
normal distribution with unknown variance.  Replacement pages are attached.

Summary

This has been updated to include the new prediction interval formulae.  Replacement pages are
attached.

Chapter 10

Section 1.5

New Core Reading and ActEd text has been added to cover the new sensitivity and specificity
objective.  Replacement pages are attached.

Summary

This has been updated to include sensitivity and specificity.  Replacement pages are attached.

Chapter 11

Section 1.3

The final sentence on page 22 is missing the word ‘evidence’.  It should read:

So we have very strong evidence to reject 0H , and we conclude that the mock scores in CS1 and
CS2 are positively correlated.

Chapter 12

Section 2.4

The value of â  stated at the end of the question on page 20 is negative when it should be
positive.  The sentence should say:

Recall that a b s= = =2ˆˆ ˆ0.164, 0.88231, 0.0732  and 8.444xxS = .



Page 6 CS1: CMP Upgrade 2021/22

© IFE: 2022 Examinations The Actuarial Education Company

Chapter 13

Section 5.4

The following has been added to the end of this section on page 42:

The residual deviance outputted by the glm() function is a measure of fit, similar to the scaled
deviance and deviance defined earlier.  However, this output won’t necessarily match the scaled
deviance or deviance calculated from first principles using the formulae in this section.

Section 5.6

The first line of R code on page 47 should be updating modelA instead of model1.  It should read:

We remove the interaction term wt:disp, as this is the least significant.

modelB <- update(modelA, ~.-wt:disp)

Section 6.1

The following has been added to the Pearson residual’s R box on page 50:

The Pearson residuals returned by R are calculated slightly differently from the definition given in
this section.  Therefore, this output won’t necessarily match the Pearson residuals calculated from

first principles using
m
m

- ˆ
ˆvar( )

y .

Section 6.2

The following has been added to the deviance residual’s R box on page 51:

The deviance residuals returned by R are calculated slightly differently from the definition given in
this section.  Therefore, this output won’t necessarily match the deviance residuals calculated
from first principles using the formulae in this section.

Section 6.3

The Core Reading under the graph of the residuals on page 52 has been corrected to read:

There does appear to be some pattern here and the three named points on the graph might
be outliers.

Summary

The summary paragraph for backward selection should say that covariates are removed until the
AIC reaches a minimum, not until it reaches a maximum.

Replacement pages are attached for all of the above changes.
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Chapter 14

Section 5

A new section has been added to cover the new credible intervals objective.  Replacement pages
are attached.

Summary

This has been updated to include the new credible interval objective.  Replacement pages are
attached.

Chapter 15

Section 3.4

Two typos in the Core Reading R code on page 20 have been corrected.  Replacement pages are
attached.

Chapter 16

Section 2.2

The formulae on page 22 have been corrected to include their conditionality on theta.
Replacement pages are attached.

Section 2.4

Part d of the question on page 28 has been deleted.
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2 Changes to the X Assignments

Overall

The X Assignments have been changed significantly to reflect the online nature of the exams. We
have not detailed all of the changes in this upgrade.

If you would like the new assignments without marking, then retakers can purchase an updated
CMP or standalone X Assignments at a significantly reduced price.  Further information on retaker
discounts can be found at:

www.acted.co.uk/paper_reduced_prices.html

If you wish to submit your scripts for marking but have only an old version, then you can order the
current assignments free of charge if you have purchased the same assignments in the same
subject in a previous year, and have purchased marking for the 2022 session.  We only accept the
current version of assignments for marking, ie those published for the sessions leading to the
2022 exams.

.
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3 Changes to the Y Assignments

The Y2 Assignment has been changed significantly to better reflect the CS1 Paper B exams. We
have not detailed all of the changes in this upgrade.

The new assignment available on the PBOR.
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4 Other tuition services

In addition to the CMP you might find the following services helpful with your study.

4.1 Study material

We also offer the following study material in Subject CS1:

· Flashcards

· Revision Notes

· ASET (ActEd Solutions with Exam Technique) and Mini-ASET

· Mock Exam and AMP (Additional Mock Pack).

For further details on ActEd’s study materials, please refer to the 2022 Student Brochure, which is
available from the ActEd website at www.ActEd.co.uk.

4.2 Tutorials

We offer the following (face-to-face and/or online) tutorials in Subject CS1:

· a set of Regular Tutorials (lasting a total of four days plus one day for R)

· a Split Block Tutorial (lasting four full days plus one day for R)

· an Online Classroom.

For further details on ActEd’s tutorials, please refer to our latest Tuition Bulletin, which is available
from the ActEd website at www.ActEd.co.uk.

4.3 Marking

You can have your attempts at any of our assignments or mock exams marked by ActEd.  When
marking your scripts, we aim to provide specific advice to improve your chances of success in the
exam and to return your scripts as quickly as possible.

For further details on ActEd’s marking services, please refer to the 2022 Student Brochure, which
is available from the ActEd website at www.ActEd.co.uk.

4.4 Feedback on the study material

ActEd is always pleased to receive feedback from students about any aspect of our study
programmes.  Please let us know if you have any specific comments (eg about certain sections of
the notes or particular questions) or general suggestions about how we can improve the study
material.  We will incorporate as many of your suggestions as we can when we update the course
material each year.  If you have any comments on this course, please send them by email to
CS1@bpp.com.
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2 Cumulant generating functions 

For many random variables the cumulant generating function (CGF) is easier to use than the 
MGF in evaluating the mean and variance. 

Definition 

The cumulant generating function, ( )XC t , of a random variable X  is given by: 

 ( ) ln ( )X XC t M t  

We can treat this as the definition of the CGF. 

Question 

The MGF of the ( , )Bin n p  distribution is given by: 

  ( )
ntM t q pe  

State the CGF of the ( , )Bin n p  distribution. 

Solution 

    ( ) ln ( ) ln( ) ln( )t n t
X XC t M t q pe n q pe  

 
As a result, if ( )XC t  is known, it is easy to determine ( )XM t . 

We have ( )( ) XC t
XM t e . 

Calculating moments 

The first three derivatives of ( )XC t  evaluated at 0t   give the mean, variance and 

skewness of X  directly.   

These results can be proved as follows: 

 
( )

( )
( )

X
X

X

M t
C t

M t


   
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2

( ) ( ) ( ( ))
( )

( ( ))
X X X

X
X

M t M t M t
C t

M t

    

and 
3 2 3

4

( )( ( )) 3( ( )) ( ) ( ) 2 ( )( ( ))
( )

( ( ))
X X X X X X X

X
X

M t M t M t M t M t M t M t
C t

M t

       
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Now (0)XM   1, so: 

 
(0) [ ]
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(0) 1
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M E X
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M


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2 2 2
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 

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Question 

State the CGF of X  where ( , )X Gamma  .  Hence prove that 



( )E X , 




2

var( )X  and 

3
2

( )skew X



 . 

Solution 




  

 


             
   

( ) 1 ( ) ln 1
( )

X X
t t

M t C t t
t

 

Differentiating with respect to t : 

 
1 1

2 2

2 2

3 3

2 3 3

( ) 1 ( ) (0)
1

1
( ) 1 1 var( ) (0)

2 1 2 2
( ) 1 1 ( ) (0)

X Xt

X X

X X

t
C t E X C

t t
C t X C

t t
C t skew X C





 
  

  
    

  
    



 

 

           
 

               
   

               
   

 

 

The coefficient of 
!

rt

r
 in the Maclaurin series of ( ) ln ( )X XC t M t  is called the r th cumulant 

and is denoted by r . 
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Similarly: 

 | 2 3
( , ) 1

( , ) , 1, 2, 3
( ) 1035 2 7 2

N M m n n
P N n M m m m

P m n n
P M m  

  
        

 

is the conditional probability function of N  given M m . 

These are identical to the marginal distributions obtained in the chapter text. 

4.5 (i) Marginal density 

  
11

2 2 2 2

00

4 4 1 4 1
( ) 3 3 3 for 0 1

5 5 2 5 2X
yy

f x x xy dy x y xy x x x


               
    

  [2] 

(ii) Conditional density 

 
 
 

24 25,
| 2 12 14 1

225 2

3( , ) 3 3
( , ) for 0 1

( ) 333

X Y
Y X x

X

x xyf x y x xy x y
f x y y

f x xx xx x


  
     


 [1] 

(iii) Covariance 

Using the marginal density function of X : 

 
11

3 2 4 3

00

4 1 4 3 1 11
( ) 3

5 2 5 4 6 15xx

E X x x dx x x


               [1] 

Obtaining the marginal density function of Y : 

  
11

2 3 2

00

4 4 1 4 1
( ) 3 1 for 0 1

5 5 2 5 2Y
xx

f y x xy dx x x y y y


                 

So: 

 
11

2 2 3

00

4 1 4 1 1 8
( )

5 2 5 2 6 15yy

E Y y y dy y y


               [1] 
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Now: 

 

 
1 1

3 2 2

0 0

11
3 2 2 3

00

1
3 2

0

1
4 3

0

4
( ) 3

5

4 3 1
5 2 3

4 3 1
5 2 3

4 3 1
5 8 9

7
18

x y

yx

x

x

E XY x y x y dy dx

x y x y dx

x x dx

x x

 







 

    

   
 

    



 





 [2] 

Hence: 

 
7 11 8 1

cov( , )
18 15 15 450

X Y       [1] 

4.6 The covariance of X  and Y  was obtained in Section 2.4 to be cov( , ) 0.02X Y  .  The variances of 
the marginal distributions are: 

  22 2 2 2 2var( ) ( ) ( ) 0 0.4 1 0.3 2 0.3 (0.9) 0.69X E X E X           

and:    2 22 2 2 2var( ) ( ) ( ) 1 0.2 2 0.4 3 0.4 2.2 0.56Y E Y E Y           

So the correlation coefficient is: 

 
cov( , ) 0.02

( , ) 0.0322
var( )var( ) 0.69 0.56

X Y
corr X Y

X Y
  


  

4.7 Let X  be the amount of a home insurance claim and Y  the amount of a car insurance claim.  
Then: 

 2 2(800,100 ) and   (1200,300 )X N Y N   

We require: 

 
 

 

      

       

1 2 3 1 2 3 4

1 2 3 1 2 3 4

( ) ( ) 800

( ) ( ) 800

P Y Y Y X X X X

P Y Y Y X X X X
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6.6 Let X  be the number of individuals with blood group A. 

 .
.(300,0.45) (135,74.25)X Bin N   [1] 

Using a continuity correction ( 115) becomes ( 115.5)P X P X  : [1] 

 
115.5 135

( 2.263) ( 2.263) 0.988
74.25

P Z P Z P Z
 

       
 

 [1] 

6.7 If our population is normal, we do not need the central limit theorem.  The distribution of X  is 
exactly normal: 

 
2

,X N
n


 
  
 

   [1] 

Hence: 

 
26 25

( 26) ( 2) 1 0.97725 0.02275
2 16

P X P Z P Z
 

         
 

 [2] 

6.8 Let iX  be the sum assured under the i th policy. 

We require: 

 
100

1
845,000i

i
P X



 
 

  
  

Now, according to the Central Limit Theorem: 

  
100

2

1
100 8000, 100 3000 (approximately)i

i
X N


    [1] 

Therefore: 

 

 
100

1

845,000 800,000
845,000 1.5

30,000

1 0.93319 0.06681

i
i

P X P Z P Z


          
   

  



 [2] 

6.9 We have the sum of 100 discrete uniform random variables, iX  ( 1,2, ,100)i   .  Using the 

formulae from page 10 of the Tables, with 1a  , 5b   and 1h  , we get: 

 1 5
( ) 3

2
E Xi


   

 1
var( ) (5 1)(5 1 2) 2

12iX       [1] 
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Using the Central Limit Theorem: 

 
100

.

.
1

(300,200)i
i

S X N


   [1] 

Using a continuity correction, the probability is: 

 (280 320) (279.5 320.5)P S P S      [1] 

Standardising this: 

 

     

    
      

   

    

    

  

  



(279.5 320.5) ( 320.5) ( 279.5)

320.5 300 279.5 300
200 200

( 1.44957) ( 1.44957)

( 1.44957) [1 ( 1.44957)]

2 ( 1.44957) 1

2 0.92641 1

0.85282

P S P S P S

P Z P Z

P Z P Z

P Z P Z

P Z

 [2] 

6.10 (i)(a) Mode 

The mode is the maximum of the PDF ( )f y : 

 1( ) 0
( )

yf y y e y


 


  


 

Differentiating and setting the derivative equal to zero gives: 

 2 1( ) ( 1)
( )

y yd
f y y e y e

dy


     


       

 

 2 [( 1) ] 0yy e y         

Alternatively, we could differentiate the log of the PDF. 

This gives: 

 1
0 ory y





   

Since ( ) 0f y   and (0) 0f  , the first solution of zero must be a minimum and therefore the 

second solution must be a maximum. 
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1 Confidence intervals in general 

A confidence interval provides an ‘interval estimate’ of an unknown parameter (as opposed 
to a ‘point estimate’).  It is designed to contain the parameter’s value with some stated 
probability.  The width of the interval provides a measure of the precision of the estimator 
involved. 

A 100(1 )%  confidence interval for   is defined by specifying random variables 

1 2
ˆ ˆ( ),  ( )X X   depending on the sample  1( , , )nX X X  such that 

   1 2
ˆ ˆ( ( ) ( )) 1P X X    . 

Rightly or wrongly,  0.05  leading to a 95% confidence interval, is by far the most 
common case used in practice and we will tend to use this in most of our illustrations. 

Thus       1 2
ˆ ˆ 0.95P X X    specifies     1 2

ˆ ˆ,X X   as a 95% confidence interval for 

 .  This emphasises the fact that it is the interval and not   that is random.  In the long 
run, 95% of the realisations of such intervals will include   and 5% of the realisations will 
not include  . 

Confidence intervals are not unique.  In general they should be obtained via the sampling 
distribution of a good estimator, in particular the maximum likelihood estimator.  Even then 
there is a choice between one-sided and two-sided intervals and between equal-tailed and 
shortest-length intervals although these are often the same, eg for sampling distributions 
that are symmetrical about the unknown value of the parameter. 

We will see some examples of these shortly. 

Often, we are more interested in statements about future observations than about the 
parameters underlying the distribution of these observations.  

This arises in the context of regression models, for example, when a fitted model is being 
used to make predictions about future observations.  Even if the parameter   equals the 
unknown mean of the distribution, it will not be the case that a future observation will fall 
within a 95% confidence interval with probability 95%.  For this, a prediction interval is 
required. 

A confidence interval gives us some information about the value of a fixed parameter,  , from a 
particular distribution, but a prediction interval gives us information about the next future value 
from that distribution, X . 

A 100(1 )%  prediction interval for 1nX  is defined by random variables ( )l X , ( )h X  such 

that 1( ( ) ( )) 1nP l X X h X     .  Prediction intervals are, like confidence intervals, not 

unique but typical choices are one-sided or symmetric.  Prediction intervals can be defined 
more generally for functions of one or more future observations. 

For example, in Chapter 12, we will predict the output of the function x  .  
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2 Derivation of confidence and prediction intervals 

2.1 The pivotal method 

There is a general method of constructing confidence intervals called the pivotal method. 

This method requires a pivotal quantity of the form  ,g X   to be found with the following 

properties: 

(1) it is a function of the sample values and the unknown parameter   

(2) its distribution is completely known 

(3) it is monotonic in  . 

The distribution in condition (2) must not depend on  .  ‘Monotonic’ means that the function 
either consistently increases or decreases with  . 

The equation: 

  
2

1

0.95,
g

g

f t dt     (where  f t  is the known probability (density) of  ,g X  ) 

defines two values, 1g  and 2g , such that: 

    1 2, 0.95P g g X g     

1 2 and g g  are usually constants. 

We are assuming here that X  has a continuous distribution.  We will look shortly at examples 
based on discrete distributions. 

If  ,g X   is monotonic increasing in  , then: 

    2 2,g X g    for some number 2  

   1 1,gg X     for some number 1  

and if  ,g X  is monotonic decreasing in  , then: 

    2 1,g X g    

   1 2,gg X     

resulting in  1 2,   being a 95% confidence interval for  . 

Fortunately, in most practical situations such quantities  ,g X   do exist, although an 

approximation to the method is needed for the binomial and Poisson cases. 
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With prediction intervals, we are predicting a single future value from the distribution.  Since we 
already have a sample of values 1( , , )nX X  from this distribution, we’ll call this new predicted 

value 1nX  . 

A similar approach can be used for prediction intervals. In the example above, of sampling 

from a normal distribution with known variance, 1nX X   has a distribution that does not 

depend on  , and in fact: 

1 (0,1)
1 1

nX X
N

n



  

The predicted value comes from a normal distribution, 2
1 ( , )nX N    . The Central Limit 

Theorem tells us that for samples from a normal distribution, 2( , )X N n  .  Hence, using the 

linear combination of normal distributions result from Chapter 4: 

 2 2 2
1 ( , ) (0, (1 1))nX X N n N n          

Standardising this gives the result above. 

The previous derivations therefore give prediction intervals for 1nX   if we replace n  

with 1 1 n  : a 95% prediction interval for the random sample of size 20 above is: 

1.96 1 1 20 62.75 20.08X      

A less formal way to consider this is as follows.  The predicted value comes from a 2( , )N    

distribution.  Since ( 1.96 1.96) 0.95P X    , we know that 95% of the values from that 
distribution lies between 1.96  .   

However, we do not know the true value of   but a 95% confidence interval for it is given by 

1.96X n .  Putting these two together, a 95% confidence interval for a predicted value 

1nX   is: 

   11.96 1.96 1.96 1
n

X n X        

Question 

The average IQ of a random sample of 50 university students is found to be 132.  Calculate a 
symmetrical 99% prediction interval for the average IQ of university students, assuming that IQs 
are normally distributed.  It is known from previous studies that the standard deviation of IQs 
among students is approximately 20. 
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Solution 

Since the distribution is normal, we use 1 (0,1)
1 1

nX X
N

n



 , when   is known. 

From the Tables we know that 0.99 ( 2.5758 2.5758)P Z    , so: 

10.99 ( 2.5758 2.5758)
1 1

nX X
P

n


   


 

Rearranging to obtain limits for 1nX  : 

10.99 ( 2.5758 1 1 2.5758 1 1 )nP X n X X n         

Using 50n  , 20   and 132X   from the question, we obtain the interval 132 52.03 , or 

 80.0,184.0 . 

So a symmetrical 99% prediction interval for the average IQ is  80.0, 184.0 . 
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3.3 Prediction interval for normal distribution 

We’ve already seen that: 

 1
/

n
X

t
S n




   

Replacing   with 1nX   and adjusting the denominator produces a pivotal quantity with the 

same distribution: 

 1
1

1 1
n

n
X X

t
S n







  

A prediction interval for 1nX   can therefore take the form:  

  0.025, 1 1 1nX t S n  

Question  

The heights of 10-year-old children are normally distributed.  The heights of a random sample of 
five children (in cm) are: 124cm, 122cm, 130cm, 125cm and 132cm. 

Calculate a 90% confidence interval for the predicted height of a 10-year-old child based on these 
data values. 

Solution 

Since the sample comes from a normal distribution, we know that 1
1 1

nX X
S n




 has a 1nt  

distribution, where 2S  is the sample variance. 

From the Tables, we find that 0.05,4 2.132t  , ie 40.90 ( 2.132 2.132)P t    .  So: 

 10.90 ( 2.132 2.132)
1 1

nX X
P

S n


   


 

Rearranging the inequality to isolate 1nX   gives: 

10.90 ( 2.132 1 1 2.132 1 1 )nP X S n X X S n        

For this sample, we have 5n  , 126.6x  , and 2 17.8s  .  Using these values gives a 90% 
prediction interval of: 

 116.7, 136.5  
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There is no simple function for calculating prediction intervals for fitted distributions in R. 
Prediction intervals can either be calculated by implementing the above formula from 
scratch or alternatively by leveraging the functionality in R for calculating prediction 
intervals for linear regressions (by regressing on a constant): 

# create random sample 
 
 set.seed(23) 
 x<- rnorm(10) # 10 observations in sample 
 
# calculate confidence and prediction intervals from scratch 
 
 mu <- mean(x) # sample mean 
 sigma <- sqrt(var(x)) # square root of sample variance 
 
 confidence_interval <- c(mu + sigma * sqrt(1/10) * qt(0.025,9), 
  mu + sigma * sqrt(1/10) * qt(0.975,9)) 
 
 prediction_interval <- c(mu + sigma * sqrt(1+1/10) * qt(0.025,9), 
  mu + sigma * sqrt(1+1/10) * qt(0.975,9)) 
 
# calculate confidence and prediction intervals using linear regression 
functionality (lm) 
 
# data.frame(1) is just dummy data in formulae below 
 
 predict(lm(x~1),data.frame(1),interval = "confidence")  
 predict(lm(x~1),data.frame(1),interval = "prediction") 
 

 
The linear regression approach is covered in Chapter 12. 
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Chapter 9 Summary 

Confidence intervals 

A confidence interval gives us a range of values in which we believe the true parameter value 
lies, together with an associated probability.  There are a number of different situations for 
which we can find confidence intervals. 

For a single sample from a normal distribution: 

    


2 2
1(0,1)  known  unknownn

X X
N t

n S n 
 

 

 
2

2
12

( 1)
n

n S 



   

For samples from two independent normal distributions: 

 
       

1 2

1 2 1 2 1 2 1 2
22 2 1 21 1 2 2

(0,1)
1 1

n n
p

X X X X
N t

S n nn n

   

 
 

     


   

   2 2 known  unknown  
            Assuming equal variances 

where: 

 
2 2

2 1 1 2 2

1 2

( 1) ( 1)
2p

n S n S
S

n n
  


 

 

To compare the variances of two independent normal populations: 

 
1 2

2 2
1 1

1, 12 2
2 2

n n
S

F
S




   

For a sample from a binomial distribution: 

 
ˆ

(0,1) or (0,1)
ˆ ˆ ˆ ˆ

p p X np
N N

pq n npq
    (approximately) 

For samples from two independent binomial distributions: 

 
 1 2 1 2 1 2

1 2
1 21 1 2 2

1 2

ˆ ˆ ( )
ˆ ˆ(0,1) (approximately) where ,

ˆ ˆ ˆ ˆ

p p p p X X
N p p

n np q p q
n n

  
 


  
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For a sample from a Poisson distribution: 

 
ˆ

(0,1) or (0,1) (approximately)
ˆ ˆ

X n
N N

n n

 

 

    

For samples from two independent Poisson distributions: 

 1 2 1 2
1 1 2 2

1 2

1 2

ˆ ˆ( ) ( ) ˆ ˆ(0,1) (approximately) where ,
ˆ ˆ

N X X

n n

   
 

 

  
 



  

General confidence intervals for parameters can be found, using the pivotal method, and the 
formulae given above. 

For paired data we subtract the paired values to come up with a new variable, D , and then 
follow one of the other standard confidence interval calculations: 

 2
1  unknownD D

n D
D

X
t

S n



   

Prediction Intervals 

A prediction interval gives us a range of values for a future predicted value, together with an 
associated probability.   

For a single sample from a normal distribution: 

 2 21 1
1(0,1)  known  unknown

1 1 1 1
n n

n
X X X X

N t
n S n

 


 


 
 

   
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1.3 One-sided and two-sided tests 

In a test of whether smoking reduces life expectancies, the hypotheses are: 

0H : smoking makes no difference to life expectancy 

1H : smoking reduces life expectancy 

This is an example of a one-sided test, since we are only considering the possibility of a reduction 
in life expectancy, ie a change in one direction.  However we could have specified the hypotheses 
as follows: 

0H : smoking makes no difference to life expectancy 

1H : smoking affects life expectancy 

This is a two-sided test since the alternative hypothesis considers the possibility of a change in 
either direction, ie an increase or a decrease. 

1.4 Test statistics 

The actual decision is based on the value of a suitable function of the data, the test statistic.  
The set of possible values of the test statistic itself divides into two subsets, a region in 
which the value of the test statistic is judged consistent with 0H , and its complement, the 

critical region (or rejection region), in which the value of the test statistic is judged 
inconsistent with 0H .  If the test statistic has a value in the critical region, 0H  is rejected.  

The test statistic (like any statistic) must be such that its distribution is completely specified 
when the value of the parameter itself is specified (and in particular ‘under 0H ’ ie when 0H  

is true). 

In exam questions the test statistic is generally calculated from data given in the question.  For 
details of how to reach a conclusion in practice, see Section 3.1. 

1.5 Errors 

It is rare for data to enable discrimination with certainty between the two hypotheses. The 
result of performing a test may be the correct decision, but two kinds of error could arise: 

Type I error: reject 0H  when it is true; and 

Type II error: fail to reject 0H  when it is false. 

The level of significance of the test, denoted   , is the probability of committing a Type I 

error, ie it is the probability of rejecting 0H  when it is in fact true.  The probability of 

committing a Type II error, denoted  , is the probability of accepting 0H  when it is false.  

An ideal test would be one which simultaneously minimises   and  .  This ideal however 

is not attainable in practice. 
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Question 

A random variable X  is believed to follow an ( )Exp  distribution.  In order to test the null 

hypothesis  20  against the alternative hypothesis  30 , where  1 , a single value is 

observed from the distribution.  If this value is less than 28, 0H  is not rejected, otherwise 0H  is 

rejected.   

Calculate the probabilities of: 

(i) a Type I error 

(ii) a Type II error. 

Solution 

(i) The probability of a Type I error is given by: 

  0 0

28/20

(reject  when  true) 28 when 1 / 20

1 (28) 0.2466X

P H H P X X Exp

F e

 

   


 

 The CDF of the exponential distribution is given on page 11 of the Tables. 

(ii) The probability of a Type II error is given by: 

  0 0

28/30

(do not reject  when  false) 28 when 1 / 30

(28) 1 0.6068X

P H H P X X Exp

F e

 

   


 

In this case we were forced to choose between  0 : 20H  and  1 : 30H .  So saying that 

0H  is false is the same as saying that   30 . 

Since we’ve only got one value in our sample here, not surprisingly, the probabilities of 
Type I and Type II errors are quite big. 

 
The probability of a Type I error is also referred to as the ‘size’ of the test, which will normally be a 
small number such as 0.05 (say). 

The power of a test is the probability of rejecting 0H  when it is false, so that the power 

equals 1  . 

In general, this will be a function of the unknown parameter value. 

For simple hypotheses the power is a single value, but for composite hypotheses it is a 
function being defined at all points in the alternative hypothesis.   

A test with a high power is said to be ‘powerful’ as it is very effective at demonstrating a positive 
result. 
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Question 

Give an expression in terms of   for the power of the test in the question on the previous page.  
Comment on how the power is affected by the value of  . 

Solution 

The power is the probability of rejecting 0H  when the true value of the parameter   is some 

value other than  20 .  In terms of   this is: 

        28/28 | 1 / 1 (28)XP X X Exp F e  

If   is large (1,000, say), then the power will be close to 1, since the test will reject  0 : 20H  
very easily.  Conversely if   is small (10, say), then the power will be close to 0, since the test will 

not reject  0 : 20H  very easily. 

 
Type I and II errors can also arise in the context of binary classification, a common situation 
in healthcare as well as in machine learning contexts. Here, rather than gathering a data 
sample consisting of multiple observations to assess whether a (population-level) 
hypothesis holds, a decision is required for each individual observation.  

In a medical context, the classification is into healthy and diseased based on a binary test 
result. In these contexts: 

A Type I error, known as a false positive, occurs when a healthy individual receives a 
positive test result; and 

A Type II error, known as a false negative, occurs when a diseased individual tests negative 
for the disease. 

The equivalent null hypothesis in this case is that the individual is healthy, and we are carrying out 
a test to ascertain whether this is the case.  If the null hypothesis is true (ie the individual is 
actually healthy) but the test is positive (indicating that the individual has the disease), then we 
would be rejecting a true hypothesis and making a Type I error. 

If the null hypothesis is false (ie the individual is sick) but the test is negative (indicating that the 
individual does not have the disease), then we would be failing to reject a false hypothesis and 
making a Type II error. 
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The table below shows all the possible outcomes from a medical test result: 

  Test result predicts patient as having disease 

  YES NO 

Patient actually 
has disease 

YES True positive (TP) 
False negative (FN) 

Type II error 

NO 
False positive (FP) 

Type I error 
True negative (TN) 

 
The probability of a diseased individual testing positive for the disease (ie a true positive 
rate), is the sensitivity of the test:   

Number of true positives
Sensitivity

Number of true positives Number of false negatives

Number of true positives
Total number of people with the disease

(positive test|individual has the disease)

1 (n

P

P








  egative test|individual has the disease)

1 (Type II error)

Power of the test

P 



 

The probability of a healthy individual testing negative (ie a true negative rate), which is 1 
minus the probability of a false positive, is called the specificity of the test.  

 

Number of true negatives
Specificity

Number of true negatives Number of false positives

Number of true negatives
Total number of people who do not have the disease

(negative test|individual does not haP






 ve the disease)

1 (positive test|individual does not have the disease)

1 (Type I error)

P

P

 

 

 

Question 

A short screening test has just been developed for depression.  An independent blind comparison 
was made with a gold-standard test for diagnosis of depression among 200 psychiatric 
outpatients.  

Among the 50 outpatients found to be depressed according to the gold-standard test, 35 patients 
tested positive under the new short test.  Among 150 patients found not to be depressed 
according to the gold-standard test, 30 patients tested positive under the new short test. 
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Calculate the sensitivity and specificity of the short screening test, assuming that the 
gold-standard test correctly classifies each individual. 

Solution 

Number of true positives 35
Sensitivity 70%

Total number of people with depression 50
    

Number of true negatives 150 30
Specificity 80%

Total number of individuals without depression 150


    

 
Examples of binary classifications in machine learning contexts include: 

 classifying emails according to whether they are spam 

 assessing whether claims received by an insurance company are fraudulent.   

One method of making such predictions is to use a generalised linear model with a binomial 
distribution.  We’ll cover this in Chapter 13.  Other methods are covered in Subject CS2. 

Although the contexts are different in important respects (eg hypothesis testing seeks to 
make inferences, classifiers seek to make predictions; the true state is usually known with 
certainty, at least for a training set, in classification problems), understanding the trade-offs 
of minimising Type I versus Type II errors play an important role in test selection in both 
cases. 

For example, in the case of using a smear test to identify cervical cancer, it is vital to have a test 
with a high sensitivity (currently it’s 86%-100%), as cervical cancer is a serious but treatable 
condition if caught early.  However, smear tests have a much lower specificity (currently 30%-
87%), which means that a high proportion of women with a positive cervical smear test who go on 
to have further investigation subsequently find that there is no cause for concern.  This is 
considered a small price to pay compared to the alternative.   

R can calculate the power of a one-sample t  test (covered in Section 3.1) using the 
function: 

 power.t.test 
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2 Classical testing, significance and p-values 

2.1 ‘Best’ tests 

The classical approach to finding a ‘good’ test (called the Neyman-Pearson theory) fixes the 
value of  , ie the level of significance required and then tries to find such a test for which 
the other error probability,  , is as small as possible for every value of the parameter 

specified by the alternative hypothesis.  This can also be described as finding the ‘most 
powerful’ test. 

The key result in the search for such a test is the Neyman-Pearson lemma, which provides 
the ‘best’ test (smallest  ) in the case of two simple hypotheses.  For a given level, the 

critical region (and in fact the test statistic) for the best test is determined by setting an 
upper bound on the likelihood ratio 0 1L L , where 0L  and 1L  are the likelihood functions of 

the data under 0H  and 1H  respectively. 

The Neyman-Pearson lemma 

Formally, if C  is a critical region of size   and there exists a constant k  such that 

0 1L L k  inside C  and 0 1L L k  outside C , then C  is a most powerful critical region of 

size   for testing the simple hypothesis  0   against the simple alternative hypothesis 

 1  . 

So a Neyman-Pearson test rejects 0H  if: 

0

1

Likelihood under 
critical value

Likelihood under 
H
H

 

Question 

A random variable X  is believed to follow an ( )Exp  distribution.  In order to test the null 
hypothesis  20  against the alternative hypothesis   30 , where 1  , a single value is 

observed from the distribution.  If this value is less than 28, 0H  is not rejected, otherwise 0H  is 
rejected.   

Show that this is a Neyman-Pearson test. 

Solution 

Given a single value from an exponential distribution, the Neyman-Pearson criterion is ‘reject 0H  

if 0 1  critical valueL L ’.  Using the null and alternative hypotheses, the test becomes: 






20

30

1
20  constant
1

30

x

x

e

e
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Chapter 10 Summary 

Statistical tests can be used to test assertions about populations. 

The process of statistical testing involves setting up a null hypothesis and an alternative 
hypothesis, calculating a test statistic and using this to determine a p-value. 

The probability of a Type I error is the probability of rejecting 0H  when it is true.  This is also 

called the size (or level) of the test.  The probability of a Type II error is the probability of not 
rejecting 0H  when it is false.  The power of a test is the probability of rejecting 0H  when it is 

false. 

Errors can also occur in the context of binary classifications, for example when an individual 
is classified as testing positive or negative for a particular disease.  The null hypothesis is that 
the individual does not have the disease.  A Type I error is a false positive and a Type II error 
is a false negative.  The sensitivity of this test is the true positive rate (which is 
1 (Type II error) power of the testP  ).  The specificity of this test is the true negative rate 
(which is 1 (Type I error)P ). 

The ‘best’ test can be found using the likelihood ratio criterion.  This leads to the tests 
detailed overleaf. 

The test for two normal means (unknown variances) requires that the variances are the 
same and uses the pooled sample variance: 

  


 

2 2
2 1 1 2 2

1 2

( 1) ( 1)
2p

n s n s
s

n n
 

2  tests can be carried out to test for goodness of fit or to test whether two factors are 

independent (using contingency tables). 

The statistic is 


2( )i i

i

O E
E

. 

To find the number of degrees of freedom for the goodness of fit test, take the number of 
cells, subtract 1 if the total of the observed figures has been used in the calculation of the 
expected numbers (which is usually the case), and then subtract the number of parameters 
estimated. 

To find the number of degrees of freedom for a contingency table calculate  ( 1)( 1)r c .  If 
the expected numbers in some cells are small, these should be grouped.  One degree of 
freedom is lost for each cell that is ‘lost’. 
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One-sample normal distribution 
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One-sample Poisson 
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Scaled deviance 

The scaled deviance for a particular model M  is defined as: 

  2M S MSD     

The deviance for the current model, MD , is defined such that: 

 scaled deviance = MD


 

Remember that   is a scale parameter, so it seems sensible that it should be used to connect the 
deviance with the scaled deviance.  For the Poisson and exponential distributions, 1  , so the 

scaled deviance and the deviance are identical. 

The smaller the deviance, the better the model from the point of view of model fit. 

However, there will be a trade-off here.  A model with many parameters will fit the data well.  
However a model with too many parameters will be difficult and complex to build, and will not 
necessarily lead to better prediction in the future.  It is possible for models to be 
‘over-parameterised’, ie factors are included that lead to a slightly, but not significantly, better fit.  
When choosing linear models, we will usually need to strike a balance between a model with too 
few parameters (which will not take account of factors that have a substantial impact on the data, 
and will therefore not be sensitive enough) and one with too many parameters (which will be too 
sensitive to factors that really do not have much effect on the results).  We use the principle of 
parsimony here, ie we choose the simplest model that does the job. 

This can be illustrated by considering the case when the data are normally distributed. 

In this case, the log-likelihood for a sample of size n  is: 

 


1

2
2

2
1

( ; , ) log ( ; , )

( )
log2

2 2

n

Y i i
i

n
i i

i

y f y

yn

   













  




 

The likelihood function for a random sample of size n  is 1 2( ) ( )... ( )nf y f y f y .  When we take logs, 
we add the logs of the individual PDF.  Recall that for the normal distribution the natural 
parameter is the mean, ie i i  . 

For the saturated model, the parameter i  is estimated by iy , and so the second term 

disappears.  Thus, the scaled deviance (twice the difference between the values of the log-
likelihood under the current and saturated models) is 

 
2

21

ˆ( )n
i i

i

y 




  

where î  is the fitted value for the current model.   
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The deviance (remembering that the scale parameter  2  ), is the well-known residual 

sum of squares: 

 2

1
ˆ( )

n

i i
i

y 

   

This is why the deviance is defined with a factor of two in it, so that for the normal model the 
deviance is equal to the residual sum of squares that we met in linear regression. 

The residual deviance (ie the deviance after all the covariates have been included) is 
displayed as part of the results from summary(model).  For example: 

  

In R we can obtain a breakdown of how the deviance is reduced by each covariate added 
sequentially by using anova(model).  However, unlike for linear regression, this command 
does not automatically carry out a test. 

Also recall that the smaller the residual (left over) deviance, the better the fit of the model. 

The residual deviance outputted by the glm() function is a measure of fit, similar to the scaled 
deviance and deviance defined earlier.  However, this output won’t necessarily match the scaled 
deviance or deviance calculated from first principles using the formulae in this section. 

5.5 Using scaled deviance and Akaike’s Information Criterion to choose 
between models  

Adding more covariates will always improve the fit and thus decrease the deviance, 
however we need to determine whether adding a particular covariate leads to a significant 
decrease in the deviance. 

For normally distributed data, the scaled deviance has a 2  distribution.  Since the scale 

parameter for the normal  2   must be estimated, we compare models by taking ratios of 

sum-of-squares and using F  tests (as in the analysis of variance for linear regression 
models).   

We covered this in Section 4.3 from the previous chapter. 

Thus, if we want to decide if Model 2 (which has p q  parameters and scaled deviance S2) 

is a significant improvement over Model 1 (which has p  parameters and scaled deviance 

S1), we see if 1 2

2

( )

( ( ))

S S q

S n p q


 

 is greater than the 5% value for the ,q n p qF    distribution. 

The code for comparing two normally distributed models, model1 and model2, in R is: 

 anova(model1, model2, test="F") 
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In the case of data that are not normally distributed, the scale parameter may be known (for 

example, for the Poisson distribution  1 ), and the deviance is only asymptotically a 2  

distribution.  For these reasons, the common procedure is to compare two models by 

looking at the difference in the scaled deviance and comparing with a 2  distribution.   

Since the distributions are only asymptotically normal, the F  test will not be very accurate.  We 

get a better result by comparing two approximate 2  distributions. 

To be more precise, it’s the absolute difference between the scaled deviances that is compared 

with 2 .   

Thus, if we want to decide if Model 2 (which has p q  parameters and scaled deviance 2S ) 

is a significant improvement over Model 1 (which has p  parameters and scaled deviance 

1S ), we see if 1 2S S  is greater than the 5% value for the 2
q  distribution. 

Recall that we subtract one degree of freedom for each extra parameter introduced.  So it’s the 
difference between p  and p q  that matters.  

Since 2 2 2
p q p q      (provided the random variables are independent), it makes sense to say 

that the difference in the scaled deviances has a 2
q  distribution. 

What we are trying to do here is to decide whether the added complexity results in significant 
additional accuracy.  If not, then it would be preferable to use the model with fewer parameters. 

Alternatively, we could express this test in terms of the log-likelihood functions.  If we let p  and 

p q  denote the log-likelihoods of the models with p  and p q  parameters respectively, then 

the test statistic can be written as: 

 
   
 

1 2 2 2

2

S p S p q

p p q

S S 



    

  

   

 
 

This is the format given on page 23 of the Tables and will be used in Subject CS2 to compare Cox 
regression models. 

Question 

Explain why the test statistic will always be positive. 

Solution 

As we have mentioned before, adding more parameters will improve the fit of the model to the 
data.  Therefore we would expect the value of the likelihood function to be larger for models with 
more parameters.  Hence, p q p    and so the statistic will be positive. 
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The code for comparing these two (non-normally distributed) models, model1 and model2, in 
R is: 

 anova(model1, model2, test="Chi") 

A very important point is that this method of comparison can only be used for nested 
models. In other words, Model 1 must be a submodel of Model 2.  Thus, we can compare 
two models for which the distribution of the data and the link function are the same, but the 
linear predictor has one extra parameter in Model 2.  For example 0 1x   and 

  2
0 1 2x x   .  But we could not compare in this way if the distribution of the data or the 

link function are different, or, for example, when the linear predictors are   2
0 1 2x x    

and 0 3 logx  .  It should be clear that we can gauge the importance of factors by 

examining the scaled deviances, but we cannot use the testing procedure outlined above.  

In the first case, the difference between the models is 2
2x , and so a significant difference 

between the models tells us that the quadratic term should be included.  In the second case, the 

difference between the models is 2
3 2log x x  , and so a significant difference doesn’t tell us 

which parameter is significant. 

An alternative method of comparing models is to use Akaike’s Information Criterion (AIC).  
Since the deviance will always decrease as more covariates are added to the model, there 
will always be a tendency to add more covariates.  However this will increase the complexity 
of the model which is generally considered to be undesirable.  To take account of the 
undesirability of increased complexity, computer packages will often quote the AIC, which 
is a penalised log-likelihood: 

     AIC 2 log 2 number of parametersML  

where log ML  is the log-likelihood of the model under consideration. 

When comparing two models, the smaller the AIC, the better the fit.  So if the change in 
deviance is more than twice the change in the number of parameters then it would give a 
smaller AIC. 

This is approximately equivalent to checking whether the difference in deviance is greater than 

the 5% value of the 2  distribution for degrees of freedom between 5 and 15.  However, it has 
the added advantage of being a simple way to compare GLMs without formal testing.  This is 

similar to comparing the adjusted 2R  for multiple linear regression models in the previous 
chapter and hence is displayed as part of the output of a computer fitted GLM. 

In R the AIC is displayed as part of the results from summary(model).   

An example of this is given in the R box at the end of Section 5.4. 
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5.6 The process of selecting explanatory variables 

As for multiple linear regression the process of selecting the optimal set of covariates for a 
GLM is not always easy.  Again, we could use one of the two following approaches: 

(1) Forward selection.  Add the covariate that reduces the AIC the most or causes a 
significant decrease in the deviance.  Continue in this way until adding any more causes the 
AIC to rise or does not lead to a significant improvement in the deviance.  Note we should 
start with main effects before interaction terms and linear terms before polynomial. 

Suppose we are modelling the number of claims on a motor insurance portfolio and we have data 
on the driver’s age, sex and vehicle group.  We would start with the null model (ie a single 
constant equal to the sample mean).  Then we would try each of single covariate models (linear 
function of age or the factors sex or vehicle group) to see which produces the most significant 

improvement in a 2  test or reduces the AIC the most.  Suppose this was sex.  Then we would try 

adding a second covariate (linear function of age or the factor vehicle group).  Suppose this was 
age.  Then we would try adding the third covariate (vehicle group).  We might then try a quadratic 
function of the variable age (and maybe higher powers) or each of 2 term interactions (eg sex*age 
or sex*group or age*group).  Finally we would try the 3 term interaction (ie sex*age*group). 

(2) Backward selection.  Start by adding all available covariates and interactions.  Then 
remove covariates one by one starting with the least significant until the AIC reaches a 
minimum or there is no significant improvement in the deviance, and all the remaining 
covariates have a statistically significant impact on the response. 

So with the last example we would start with the 3 term interaction sex*age*group and look at 
which parameter has the largest p-value (in a test of it being zero) and remove that.  We should 

see a significant improvement in a 2  test and the AIC should fall.  Then we remove the next 

parameter with the largest p-value and so on. 

The Core Reading uses R to demonstrate this procedure.  Whilst this will be covered in the CS1 
PBOR, it’s important to understand the process here. 

Example 

We demonstrate both of these methods in R using a binomial model on the mtcars dataset 
from the MASS package to determine whether a car has a V engine or an S engine (vs) 
using weight in 1000 lbs (wt) and engine displacement in cubic inches (disp) as covariates.   

Forward selection 

Starting with the null model: 

 model0 <- glm(vs ~ 1, data=mtcars, family=binomial) 

The AIC of this model (which would be displayed using summary(model0)) is 45.86. 

We have to choose whether we add disp or wt first.  We try each and see which has the 
greatest improvement in the deviance. 

 model1 <- update(model0, ~.+ disp) 
 anova(model0, model1, test="Chi") 
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 model2 <- update(model0, ~.+ wt) 
 anova(model0, model2, test="Chi") 

 

So we can see that disp has produced the more significant result – so we add that 
covariate first. 

R always calls the models we are comparing ‘Model 1’ and ‘Model 2’, irrespective of how we have 
named them.  This can lead to confusion if we are not careful. 

The AIC of model 1 (adding disp) is 26.7 whereas the AIC of model 2 (adding wt) is 35.37.  
Therefore adding disp reduces the AIC more from model 0’s value of 45.86. 

Let us now see if adding wt to disp produces a significant improvement: 

 model3 <- update(model1, ~.+ wt) 

 anova(model1, model3, test="Chi") 

 

This has not led to a significant improvement in the deviance so we would not add wt (and 
therefore we definitely would not add an interaction term between disp and wt). 

The AIC of model 3 (adding wt) is 27.4 which is worse than model 1’s AIC of 26.7.  Therefore we 
would not add it. 

Incidentally the AIC for models 0, 1, 2, 3 are 45.86, 26.7, 35.37 and 27.4.  So using these 
would have given the same results (as Model 1 produces a smaller AIC than Model 2, and 
then Model 3 increases the AIC and so we would not have selected it). 

Backward selection 

Starting with all the possibilities: 

 modelA <- glm(vs ~ wt * disp, data=mtcars, family=binomial) 
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The output is: 

 

None of these covariates are significant.   

The parameter of the interaction term has the highest p-value (0.829), and so is most likely to be 
zero. 

We first remove the interaction term wt:disp, as this is the least significant parameter: 

 modelB <- update(model1, ~.-wt:disp) 

 

The AIC has fallen from 29.361 to 27.4. 

Alternatively, carrying out a 2  test using anova(modelA, modelB, test="Chi") would 

show that there is no significant difference between the models (p-value of 0.8417) and therefore 
we are correct to remove the interaction term between wt and disp. 

The wt term is not significant so removing that: 

 modelC <- update(modelB, ~.-wt) 

 

Both of these coefficients are significant and the AIC has fallen from 27.4 to 26.696.   

Alternatively, carrying out a 2  test using anova(modelB, modelC, test="Chi") would 
show that there is no significant difference between the models (p-value of 0.255) and therefore 
we are correct to remove the wt covariate. 

We would stop at this model.  If we remove the disp term (to give the null model), the AIC 
increases to 45.86.   

Alternatively, carrying out a 2  test between these two models would show a very significant 

difference (p-value of less than 0.001) and therefore we should not remove the disp covariate. 

We can see that both forward and backward selection lead to the same model being chosen 
in this case. 
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5.7 Estimating the response variable 

Once we have obtained our model and its estimates, we are then able to calculate the value 
of the linear predictor,  , and by using the inverse of the link function we can calculate our 

estimate of the response variable  1 ˆˆ ( )g  . 

Substituting the estimated parameters into the linear predictor gives the estimated value of the 
linear predictor for different individuals.  The link function links the linear predictor to the mean 
of the distribution.  Hence we can obtain an estimate for the mean of the distribution of Y  for 
that individual. 

Let’s now return to the Core Reading example on page 45. 

Suppose, we wish to estimate the probability of having a V engine for a car with weight 
2,100 lbs and displacement 180 cubic inches.   

Using our linear predictor 0 1 disp    (ie vs ~ disp), we obtained estimates of 

0
ˆ 4.137827   and 1

ˆ 0.021600   .   

These coefficients displayed as part of the summary output of Model C in the example above. 

Hence, for displacement 180 we have    ˆ 4.137827 0.021600 180 0.24983 . We did not 

specify the link function so we shall use the canonical binomial link function which is the 
logit function. 

 
 

      

0.24983

0.24983

ˆ
ˆ0.24983 log 0.562

ˆ1 1

e

e

 


 

Recall that the mean for a binomial model is the probability.  So the probability of having a V 
engine for a car with weight 2,100 lbs and displacement 180 cubic inches is 56.2%. 

The figure 2,100 does not enter the calculation because we removed the weight covariate. 

In R we can obtain this as follows: 

 newdata <-data.frame(disp=180) 
 predict(model,newdata,type="response") 
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6 Residuals analysis and assessment of model fit 

Once a possible model has been found it should be checked by looking at the residuals.  
The residuals are based on the differences between the observed responses, y , and the 

fitted responses, ̂ .  The fitted responses are obtained by applying the inverse of the link 

function to the linear predictor with the fitted values of the parameters.   

We looked at how we could obtain predicted responses values in the previous section.  The fitted 
values are the predicted Y  values for the observed data set, x . 

The R code for obtaining the fitted values of a GLM is: 

 fitted(model) 

For example, in the actuarial pass rates model detailed on page 6, we could calculate from the 
model what the pass rate ought to be for students who have attended tutorials, submitted three 
assignments and scored 60% on the mock exam.   

The difference between this theoretical pass rate and the actual pass rate observed for students 
who match the criteria exactly will give us the residuals. 

Question 

Draw up a table showing the differences between the actual and expected values of the truancy 
rates in the example on page 9. 

Solution 

Recall that the expected number of unexplained absences in a year were modelled by: 

   i j x     where  agex , and   and   are as follows: 

  2.64WC   1.14OC   3.26M   3.54F   0.64  

where  Within catchmentWC , OC  Outside catchment, MaleM ,  FemaleF .   

This gives expected values of: 

  Age last birthday 

  8 10 12 14 

Within 
catchment 

area 

Male 0.46 1.65 5.93 21.33 

Female 0.35 1.25 4.48 16.12 

Outside 
catchment 

area 

Male 2.05 7.39 26.58 95.58 

Female 1.55 5.58 20.09 72.24 
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So the differences between the actual values (given on page 9) and expected values are: 

  Age last birthday 

  8 10 12 14 

Within 
catchment 

area 

Male 1.34 0.35 0.37 –7.23 

Female 0.15 0.35 0.52 0.08 

Outside 
catchment 

area 

Male 0.05 0.11 –1.08 –23.58 

Female 1.25 0.62 –0.49 –4.04 

 
 
The procedure here is a natural extension of the way we calculated residuals for linear regression 
models covered in the previous chapter.  However, because of the different distributions used, we 
need to transform these ‘raw’ residuals so we are able to interpret them meaningfully. 

There are two kinds of residuals: Pearson and deviance.  

6.1 Pearson residuals 

The Pearson residuals are defined as: 

 
 ˆ

ˆvar( )

y 


 

The ˆvar( )  in the denominator refers to the variance of the response distribution, var( )Y  using 
the fitted values, ̂ , in the formula.  For example, since the variance of the exponential 

distribution is 2 , we have 2ˆ ˆvar( )   in that case. 

The Pearson residual, which is often used for normally distributed data, has the 
disadvantage that its distribution is often skewed for non-normal data.  This makes the 
interpretation of residual plots difficult.   

The R code for obtaining the Pearson residuals is: 

 residuals(model, type= "pearson") 

The Pearson residuals returned by R are calculated slightly differently from the definition given in 
this section.  Therefore, this output won’t necessarily match the Pearson residuals calculated from 

first principles using 



 ˆ
ˆvar( )

y
. 

If the data come from a normal distribution, then the Pearson residuals will follow the standard 
normal distribution.  By comparing these residuals to a standard normal (eg by using a Q-Q plot), 
we can determine whether the model is a good fit.   
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However, for non-normal data the Pearson residuals will not follow the standard normal 
distribution and won’t even be symmetrical.  This makes it difficult to determine whether the 
model is a good fit.  Hence we will need to use a different type of residual. 

6.2 Deviance residuals 

Deviance residuals are defined as the product of the sign of ˆy   and the square root of 

the contribution of y  to the scaled deviance.  Thus, the deviance residual is: 

 ˆ( ) isign y d  

where the scaled deviance is  2
id . 

Recall that: 

 
1 if 0

( )
1 if 0

x
sign x

x
 

  
 

Deviance residuals are usually more likely to be symmetrically distributed and to have 
approximately normal distributions, and are preferred for actuarial applications.   

The R code for obtaining the deviance residuals is: 

 residuals(model) 

The deviance residuals returned by R are calculated slightly differently from the definition given in 
this section.  Therefore, this output won’t necessarily match the deviance residuals calculated 
from first principles using the formulae in this section. 

We can see that deviance residuals are more likely to be symmetrically distributed by considering 

the following result:  If  iX  is a set of independent normal random variables, then 2
iY X  will 

have a 2  distribution.  Therefore, since 2
id  (ie the scaled deviance) is approximately 2 , it 

follows that id  (and also the deviance residual) is likely to be approximately normal. 

Note that for normally distributed data, the Pearson and deviance residuals are identical. 

Question 

Show that, for normally distributed data, the Pearson and deviance residuals are identical. 

Solution 

If  2( , )i iY N   , then from Section 6.1, the Pearson residuals are: 

 
ˆ ˆ
ˆvar( )

i i i i

i

y y 


 
  
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In Section 5.4, we saw that the scaled deviance was: 

 
2

2
2

1 1

( )n n
i i

i
i i

y
d


 


   

So the deviance residuals are given by:  

 ( ) ( ) i i i i
i i i i i

y y
sign y d sign y

 
 

 
 

     

Hence the Pearson residuals and the deviance residuals are the same. 

 
6.3 Using residual plots to check the fit 

The assumptions of a GLM require that the residuals should show no patterns.  The 
presence of a pattern implies that something has been missed in the relationship between 
the predictors and the response.  If this is the case, other model specifications should be 
tried.   

So, in addition to the residuals being symmetrical, we would expect no connection between the 
residuals and the explanatory covariates.  Rather than plotting the residuals against each of the 
covariates, we could just see if there is a pattern when plotted against the fitted values. 

For our model above (on the mtcars dataset), a plot of the residuals against the fitted 

values is as follows: 

 

There does appear to be some pattern here and the three named points on the graph might 
be outliers. 
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Scaled deviance 

The scaled deviance (or likelihood ratio) is used to compare the fit of the saturated model 
with the fit of another model.  The scaled deviance of Model 1 is defined as: 

  1 12 ln lnSSD L L   

where SL  is the likelihood of the saturated model. 

The poorer the fit of Model 1, the bigger the scaled deviance will be. 

Comparing models 

Where the data are normally distributed, it can be shown that, for two nested models, 
Models 1 and 2 where Model 1 has p  parameters and Model 2 has p q  parameters: 

 2
1 2 qSD SD    

For other distributions, the difference in the scaled deviances has an approximate 
(asymptotic) chi-square distribution with q  degrees of freedom. 

Alternatively, we can compare the reduction in the AIC of the two models. 

The process of selecting explanatory variables 

(1) Forward selection.  Add the covariate that reduces the AIC the most or causes a 
significant decrease in the deviance.  Continue in this way until adding any more causes the 
AIC to rise or does not lead to a significant improvement in the deviance.  It is usual to 
consider main effects before interaction terms and linear terms before polynomials. 

(2) Backward selection.  Start by adding all available covariates and interactions.  Then 
remove covariates one by one starting with the least significant until the AIC reaches a 
minimum or there is no significant improvement in the deviance, and all the remaining 
covariates have a statistically significant impact on the response. 

Rules for determining the number of parameters in a model 

The constant model has 1 parameter. 

A model consisting of one main effect that is a variable (eg age) has two parameters (eg 0  
and 1 ). 

A model consisting of one main effect that is a factor (eg sex) has as many parameters as 
there are categories (eg i , i = 1 (male) and i = 2 (female)). 
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When a new main effect is added to a model (eg age + sex), we add 1n   parameters where 
n  is the number of parameters if the main effect were on its own (eg for age + sex, the 
number of parameters is 2 + (2 – 1) = 3).   

When an interactive effect (a dot term) is added to a model (eg age + sex + age.sex), we add 
( 1)( 1)m n   parameters for the interactive effect (eg for age + sex + age.sex, the number of 
parameters is 2 + (2 – 1) + (2 – 1)(2 – 1) = 4). 

A model consisting of a star term only (eg age*sex) has mn  parameters where m and n are 
the number of parameters if the main effects were on their own (eg for age*sex, the number 
of parameters is 2 2 4  ). 

Residuals 

A residual is a measure of the difference between the observed values iy  and the fitted 

values ˆi .  Two commonly used residuals for GLMs are the Pearson residual and the 

deviance residual. 

Pearson residuals 

These are 
ˆ
ˆvar( )

y 



 where  ˆvar   is  var Y  with   replaced by the corresponding fitted 

value ̂ . 

The Pearson residual, which is often used for normally distributed data, has the disadvantage 
that its distribution is often skewed for non-normal data.  This makes the interpretation of 
residuals plots difficult.   

Deviance residuals 

These are ˆ( ) isign y d   where 2
id  is the scaled deviance of the model. 

Deviance residuals are usually more likely to be symmetrically distributed and to have 
approximately normal distributions, and are preferred for actuarial applications.   

For normally distributed data, the Pearson and deviance residuals are identical. 

Testing whether a parameter is significantly different from zero 

As a general rule, we can conclude that a parameter is significantly different from zero if it is 
at least twice as big in absolute terms as its standard error, ie if: 

  2 .s e   
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5 Credible Intervals 

Having derived the posterior distribution of a parameter  , there are several ways in which 
we can summarise inferences about  .  For single parameters, a plot of the posterior 
density is very informative and shows clearly the range of values consistent with our 
posterior beliefs.  

In Section 5.1 below, the Core Reading considers a numerical example where the posterior 
distribution is (15,5.3)Gamma .   A plot of the PDF of this distribution is given below: 

 

As described earlier, we can also quote quantities such as the posterior mean of a 
parameter or the posterior variance.  

For the (15,5.3)Gamma  distribution pictured above, the mean is 2.83, the variance is 0.534 and 
the standard deviation is 0.731. 

For expressing and quantifying uncertainty about the values of  , a natural analogue of the 
classical confidence interval is the Bayesian credible interval.  

In Chapter 8, we saw how to estimate parameters using the method of moments and the method 
of maximum likelihood.  In Chapter 9, we used confidence intervals to express the uncertainty in 
these estimates.  Earlier in this chapter, we estimated a parameter using the mean, mode or 
median of its posterior distribution.  We will now explain how to express the uncertainty in these 
estimates. 

Suppose that, given data x , we derive the posterior density of   as ( | x)f  .  Then, for 

 0 1 , a 100(1 )%  credible interval for   is a region of  , say A , which is such that:  

 ( | ) ( | ) 1
A

P A x f x d         

So, a 100(1 )%  credible interval is an interval whose posterior probability of containing   

is 1  .   
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5.1 Equal-tailed credible intervals 

Often, we quote an equal-tailed credible interval, obtained by using the 100( 2)%  and 

100(1 2)%  critical points of the posterior distribution.  For example, with  0.05 , the 

2.5% and 97.5% critical points of the posterior distribution would give a 95% credible 
interval.   

This is similar to the approach we used in Chapter 9 to calculate confidence intervals.  If we want 
a two-sided 95% confidence interval, we split the remaining 5% equally between the two tails.    

By definition, an equal-tailed credible interval must contain the median of the posterior 
distribution, ie the posterior estimate for   under absolute loss. 

To calculate equal-tailed credible intervals for a parameter we need the cumulative 
distribution function of its posterior distribution.  When the posterior distribution has a 
convenient form, such as a normal, beta or gamma distribution, we can usually use 
statistical tables, or standard functions from a computer package such as R to do the 
calculations. 

There are no tables for the beta distribution in the Tables, so we have to use R to obtain credible 
intervals based on a beta posterior distribution.  We can, however, use the standard normal 
tables for a normal posterior, and the chi-square tables, along with the gamma-chi relationship, 
for a gamma posterior. 

Example 

Suppose that, given data x , the posterior distribution of the parameter   is a gamma 

distribution with parameters 15 and 5.3, ie | (15,5.3)x Gamma .  For an equal-tailed 90% 

credible interval of  , we need the 5% and 95% critical points of the (15,5.3)Gamma  

distribution.  

In R we can use: 

 qgamma(0.05,15,5.3) 
 qgamma(0.95,15,5.3) 

to obtain the 90% equal-tailed credible interval as (1.74,4.13). 

Notice that, in this case, we can also use the relationship between the gamma and the 
chi-square distribution to calculate the interval.  In particular, we have: 

 2
30(2 5.3) | 10.6 | (15,1 2), 10.6 | ~x x Gamma ie x        

From statistical tables, we have that the 5% and 95% critical points of the 2
30  distribution 

are 18.49 and 43.77, respectively.  So a 90% equal-tailed credible interval for 10.6 | x  is 

(18.49, 43.77), and therefore a 90% equal-tailed credible interval for | x  is: 

 
18.49 43.77

, (1.74,4.13)
10.6 10.6

   
 

, exactly as before. 
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We can similarly obtain a 95% equal-tailed credible interval for |x : 

 

The credible interval is (1.58, 4.43).  95% of the distribution (the shaded area in the diagram 
above) lies between these values, with 2.5% on either side.  The areas under the graph in the two 
tails are equal, ie    ( 1.58| ) ( 4.43| ) 0.025P x P x  . 

Question 

A random sample of size 15 from a normal distribution with mean   and standard deviation 3 

yields the following data values: 

 10.75  −0.29  5.37  6.68  8.77  1.69  7.12  4.89  6.45  4.27  9.37  5.68  3.87  7.70  6.98 

The prior distribution of   is 2(5,2 )N .   

Calculate an equal-tailed 95% Bayesian credible interval for   based on these data values.  You 

are given that the posterior distribution of   is 2(5.83,0.722 )N . 

Solution 

From the Tables, we have ( 1.96 1.96) 0.95P Z    .  So the lower and upper 2.5% points of 
2(5.83,0.722 )N  are: 

 5.83 1.96 0.772 4.41        

and: 

 5.83 1.96 0.772 7.24    

So an equal-tailed 95% credible interval for   is (4.41,7.24) .      

 



Page 26b                       CS1-14: Bayesian statistics

 IFE: 2022 Examinations The Actuarial Education Company 

5.2 Highest posterior density intervals 

As an alternative to an equal-tailed credible interval, a 100(1 )%  highest posterior density 

interval for   could be quoted.  In addition to satisfying   ( | ) 1P A x  , this interval is 

such that the minimum density of any point within the interval A  is equal to or higher than 
the density outside that interval.   

The following diagram shows a 95% highest posterior density interval for |x : 

 

Calculating highest posterior density intervals for non-symmetrical distributions is not 
straightforward.  In R, the package bayestestR has the function hdi that calculates the highest 
density interval for a parameter.  This is beyond the scope of Subject CS1, but for interested 
students, the code used to generate the 95% highest posterior density interval in this example is 
given below: 

 install.packages("bayestestR")  
 library("bayestestR")  

 set.seed(3) 
 x <- rgamma(100000,15,5.3) 
 hdi(x,ci=0.95) 

The credible interval is (1.48, 4.29).  The areas under the graph in the two tails are not equal, 
ie    ( 1.48| ) ( 4.29| ) 0.025P x P x  , although the probabilities do sum to 5%.   

For unimodal distributions (such as the gamma distribution), the two endpoints of a highest 
posterior density interval have the same height (ie density).   In the example above:  

 (1.48) (4.29) 0.80f f  

The densities of all the values in a higher posterior density interval are larger than the densities of 
those outside the interval (ie the graph is higher in the interval).  So, a higher posterior density 
interval contains a collection of most likely values of the parameter  , which is a desirable 
property.  By definition, a higher posterior density interval must contain the mode, ie the 
posterior estimate for   under 0-1 loss. 
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For a unimodal distribution, the highest posterior density interval is the shortest interval amongst 
all Bayesian credible intervals.  For symmetrical distributions, such as a normal posterior 
distribution, the equal-tailed credible interval and highest posterior density interval are identical 
when based on the same data set.  For skewed distributions, such as the gamma and most beta 
posterior distributions, the highest posterior density interval is not the same as the equal-tailed 
interval (as we have seen in the example above involving the (15,5.3)Gamma  distribution). 
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Chapter 14 Summary 

Bayesian estimation v classical estimation 

A common problem in statistics is to estimate the value of some unknown parameter  . 

The classical approach to this problem is to treat   as a fixed, but unknown, constant and 
use sample data to estimate its value.  For example, if   represents some population mean 
then its value may be estimated by a sample mean. 

The Bayesian approach is to treat   as a random variable.   

Prior distribution  

The prior distribution of   represents the knowledge available about the possible values of 
  before the collection of any sample data.   

Likelihood function  

A likelihood function, L , is then determined, based on a random sample  1 2, , ... , .nX X X X   

The likelihood function is the joint PDF (or, in the discrete case, the joint probability) of 

1 2, , , |nX X X  .   

Posterior distribution 

The prior distribution and the likelihood function are combined to obtain the posterior 
distribution of  . 

When   is a continuous random variable:   

  ( ) ( )post priorf f L    

When   is a discrete random variable, the posterior distribution is a set of conditional 
probabilities. 

Conjugate distributions 

For a given likelihood, if the prior distribution leads to a posterior distribution belonging to 
the same family as the prior, then this prior is called the conjugate prior for this likelihood.   

Uninformative prior distributions 

If we have no prior knowledge about  , a uniform prior distribution should be used.  This is 
sometimes referred to as an uninformative prior distribution.  When the prior distribution is 
uniform, the posterior PDF is proportional to the likelihood function. 
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Loss functions 

A loss function, such as quadratic (or squared) error loss, absolute error loss or all-or-nothing 
(0/1) loss gives a measure of the loss incurred when ̂  is used as an estimator of the true 
value of  .  In other words, it measures the seriousness of an incorrect estimator. 

Under squared error loss, the mean of the posterior distribution minimises the expected loss 
function.   

Under absolute error loss, the median of the posterior distribution minimises the expected 
loss function.   

Under all-or-nothing loss, the mode of the posterior distribution minimises the expected loss 
function. 

Credible intervals 

A Bayesian credible interval quantifies uncertainty about the values of parameter  .  A
100(1 )%  credible interval is an interval whose posterior probability of containing   is 
1  . 

These can be equal-tailed intervals or highest posterior density intervals. 

The endpoints of an equal-tailed 95% credible interval for   are the lower and upper 2.5% 
points of the posterior distribution of  .  If the posterior distribution is a standard 
distribution with tabulated values, we can calculate equal-tailed confidence intervals 
algebraically. 

The densities of all points within a highest posterior density interval are greater than or 
equal to the densities of all points that lie outside the interval.  We can use R to calculate 
highest posterior density intervals. 
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So the posterior distribution of   given x  is: 
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where: 
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
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The Bayesian estimate of   under quadratic loss is the mean of this posterior distribution: 
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or: 

 ( | ) (1 )E x Z x Z      (15.3.4) 

where: 

 2 2
1 2( / )

n
Z

n  



 (15.3.5) 

Equation (15.3.4) is a credibility estimate of ( | )E x  since it is a weighted average of two 

estimates: the first, x , is a maximum likelihood estimate based solely on data from the risk 
itself, and the second,   is the best available estimate if no data were available from the 

risk itself. 

Notice that, as for the Poisson/gamma model, the estimate based solely on data from the 
risk itself is a linear function of the observed data values. 

There are some further points to be made about the credibility factor, Z , given by (15.3.5): 

 It is always between zero and one.   

 It is an increasing function of n , the amount of data available.   

 It is an increasing function of 2 , the standard deviation of the prior distribution.   

These features are all exactly what would be expected for a credibility factor. 
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Notice also that, as 2
1  increases, the denominator increases, and so Z  decreases.  2

1  denotes 
the variance of the distribution of the sample values.  If this is large, then the sample values are 
likely to be spread over a wide range, and they will therefore be less reliable for estimation.  

The R code to obtain the Monte Carlo credibility premiums for the above based on M  
simulations is: 

 Z <- n/(n+sigma1^2/sigma2^2) 
 cp <- rep(0,M) 
 for (i in 1:M) 
  {theta <- rnorm(1,mu,sigma2) 
  x <- rnorm(n,theta,sigma1) 
  cp[i] <- Z*mean(x)+(1-Z)*mu 
  } 

The average of these credibility estimates is given by: 

 mean(cp) 

3.5 Further remarks on the normal/normal model 

In Section 3.4 the normal/normal model for the estimation of a pure premium was discussed 
within the framework of Bayesian statistics.  In this section the same model will be 
considered, without making any different assumptions, but in a slightly different way.   

The reason for doing this is that some of the observations will be helpful when empirical 
Bayes credibility theory is considered in the next chapter. 

In this section, as in Section 3.4, the problem is to estimate the expected aggregate claims 
produced each year by a risk.  Let: 

  1 2 1, , , , ,n nX X X X   

be random variables representing the aggregate claims in successive years.  The following 
assumptions are made. 

The distribution of each jX  depends on the value of a fixed, but unknown, parameter,  .  

The conditional distribution of jX  given   is 2
1( , )N   .  

Given  , the random variables  jX  are independent.  

The prior distribution of   is 2
2( , )N   .  

The values of 1 2, , , nX X X  have already been observed and the expected aggregate claims 

in the coming, ie ( 1)n  th, year need to be estimated.  
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So, depending on the context of the problem, jX  represents either: 

• the aggregate claim amount in Year j  per unit of risk volume, or  

• the total number of claims in Year j   per unit of risk volume. 

In Model 1, we assume that jP  is always equal to 1, ie the volume of business is the same for each 

risk group. 

Assumptions for EBCT Model 2 

The assumptions that specify EBCT Model 2 are as follows. 

Assumption 7:  The distribution of each jX  depends on the value of a parameter, θ , whose 

value is the same for each j  but is unknown.  

Assumption 8:  Given θ , the jX ’s are independent (but not necessarily identically 
distributed).  

Assumption 9:  ( | )jE X θ  does not depend on j .  

Assumption 10:  var( | )j jP X θ  does not depend on j .  

As in previous sections, θ  is known as the risk parameter for the risk, and, as for EBCT 
Model 1, it could be just a single real valued number or a more general quantity such as a 
vector of real valued numbers.  Assumption 7 is the standard assumption for all credibility 
models considered here.  Assumption 8 corresponds to Assumption 2 in EBCT Model 1, but 
notice that Assumption 8 is slightly weaker than Assumption 2.  Assumption 8 does not 
require the jX ’s to be conditionally (given θ ) identically distributed, but only to be 

conditionally independent.  There is no assumption in EBCT Model 2 that the jX ’s are 
unconditionally, or conditionally given θ , identically distributed. 

If all the jP ’s are equal to 1, then Assumptions 7-10, taken together, become the same as 

Assumptions 4, 5 and 6 (taken together) in EBCT Model 1.  Thus, if all the jP ’s are equal 
to 1, EBCT Model 2 is exactly the same as EBCT Model 1. 

Having made Assumptions 9 and 10, ( )m θ  and 2( )s θ  can be defined as follows: 

( ) ( | )jm E Xθ θ=  

2( ) var( | )j js P Xθ θ=  

The definition of ( )m θ  corresponds exactly to the definition for EBCT Model 1 in Section 1 

but the definition of 2( )s θ  is slightly different. 

In Model 2, there is a factor of jP  in the definition of 2( )s θ .  In Model 1, 1jP =  and so 
2( ) var( | )js Xθ θ= . 
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To gain a little more insight into Assumptions 9 and 10, consider the following example.  
Suppose the risk being considered is made up of a different number of independent policies 
each year and that the number of policies in Year j  is jP .   

It is important to realise that jP  is a known quantity, not a random variable. 

Suppose also that the aggregate claims in a single year from a single policy have mean 
( )m θ  and variance 2( )s θ , where ( )m  and 2 ( )s  are functions of θ , and θ  is the fixed, but 

unknown, risk parameter for all these policies.  Now let jY  denote the aggregate claims 

from all the policies in force in Year j .   

Then ( | )jE Y θ  is the expected aggregate claim amount from all policies in year j , and: 

 
1 1

( | ) expected aggregate claim amount for policy ( )
j jP P

j
k k

E Y k mθ θ
= =

= =   

So: 

 ( | ) ( )j jE Y P mθ θ=  

Also, since the policies are assumed to be independent: 

 2

1 1
var( | ) variance of aggregate claim amount for policy ( )

j jP P

j
k k

Y k sθ θ
= =

= =    

ie: 

2var( | ) ( )j jY P sθ θ=  

Then, since j
j

j

Y
X

P
= : 

 1( | ) ( | ) ( )j j
j

E X E Y m
P

θ θ θ= =     and     
2

2
1 ( )var( | ) var( | )j j

jj

sX Y
PP

θθ θ= =   

So: 

 ( | ) ( )jE X mθ θ=    and    2var( | ) ( )j jP X sθ θ=  


